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The Anderson model [1] of an impurity state in a conductor dates from 1961. A very
important development occurred in 1966 when Schrieffer and Wolff [2] showed that the
Kondo Hamiltonian could be derived from the Anderson model in an appropriate limit. In
this comment we address the questions:

• What are the Anderson and Kondo problems?
• What physical systems do they describe and why have they dominated many-body physics

for so long?
• Why are they so hard—particularly for the so-called lattice problems?
• What is new now that makes the solution of the impurity problem so relevant?

A full answer to all these questions (except the last one) is contained in the excellent book
by Hewson [3]; this is a very brief non-mathematical summary.

The Anderson model starts from a model of non-interacting Fermi gas of electrons
hybridizing with the conduction electrons. If the localized energy is in a band gap then it
is sharp—as for a gap state in a semiconductor. If it hybridizes with the conduction electrons
to give a localized energy that is in a band, then we have a resonance. In this case any electron
placed at the impurity site will stay, on average, for a time τ before it rejoins the conduction
band and moves off into the rest of the sample. By the uncertainty principle this means that the
state acquires an energy width �. There are many examples of such resonances in condensed
matter physics. For example, if a heavy atom is substituted in a solid, then there will be a
phonon resonance that is associated with the characteristic vibration frequency of such an
atom.

In a metal, only states that lie below the Fermi level are occupied and it is convenient
to measure the impurity resonance energy relative to the Fermi level. For the resonance to
be essentially fully occupied, its energy ε0 must lie below the Fermi level by an amount that
exceeds its width, �. Indeed it is very straightforward to show [3] that the occupation of such
a resonance is given by 2/π cot−1(ε0/�).

For |ε0| � � the original localized level lies far below the Fermi level, so it has an
extremely high probability of being occupied. In the opposite limit such that the localized
state lies exactly at the Fermi level, the occupation of the localized state is then exactly 1/2.
All of this was known from the work of Koster and Slater [4] among others from the 1950s. This
theory is linear and hence can be evaluated to any desired accuracy. It works extremely well
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for neutral bosonic excitations such as phonons or quasi-localized states in photonic lattices,
but fails for electron systems because of the electron–electron repulsion felt by the electrons
in the impurity state as was realized by Anderson [1] who introduced a very important extra
piece of physics into this model.

Anderson was interested in the question of why some impurities carried a magnetic
moment in some metals but not in others. He showed that this arose because of the Coulomb
repulsion between electrons on the localized state. The localized state is a unique orbit and
so the Pauli exclusion principle forbids the double occupation of the localized state by two
electrons of the same spin. The Coulomb repulsion introduces a term that makes double
occupation by two electrons of opposite spin unfavourable. This causes the localized state to
be occupied by one electron with a free spin and hence be magnetic.

We now have all the ingredients of the Anderson Hamiltonian: there is a localized energy
level at energy ε0 that hybridizes to give a state of width � and a repulsion, U , between two
electrons of opposite spin if they occupy the localized orbital.

It costs an energy ε0 to add an electron to an empty impurity site and an energy ε0 + U to
add an electron to a site where there is already an electron. If we choose ε0 − U/2, then the
problem is symmetric because the two energies lie equidistant from the Fermi energy. In this
case there is a particle–hole symmetry and the impurity site is always occupied by exactly one
electron independent of the value of U . This is known as the symmetric Anderson model.

The Kondo model is equivalent to the Anderson model in the limit where the localized
state energy, ε0, lies far below the Fermi level but the energy ε0 +U is far above the Fermi level.
In this case the localized site is overwhelmingly likely to be occupied by one electron. This
one electron carries a spin which is free to change its orientation and hence this gives resonance
scattering right at the Fermi level. An inelastic scattering is defined as one in which the state of
the scattering particle is changed. In a Kondo system, a scattering event in which the incoming
conduction electron and the localized spin both change their spin orientation is inelastic. It is
well known that the electron occupation is discontinuous at the Fermi energy of a metal but
rigorously this only applies at zero temperature. An inelastic scattering occurs at the Fermi
level that is becoming a singular point at absolute zero. This gives a divergent perturbation
theory below a temperature that is defined as the Kondo temperature and a strongly enhanced
density of states just at the Fermi level. This narrow peak in the density of states at the Fermi
level which emerges at low temperatures is known as the ‘Kondo resonance’.

At first this was a surprise. After all, the Anderson model has two states at energies
−|ε0| and U + ε0 which lie far below and far above the Fermi level respectively. The Kondo
Hamiltonian has singular scattering just at the Fermi level. The effect occurs because of the
electron spin—a localised state with one electron will be magnetic. In the absence of any
interactions the magnetic state is two fold degenerate. The weak interactions of the localized
spin with the conduction electrons lead to the true ground state being a nonmagnetic singlet.

The Kondo temperature is the characteristic temperature of the problem. For T > TK

we have a scattering problem and for T < TK a bound state forms in which the localized
spin is exactly screened out by the conduction electrons. One of the features that makes the
Anderson problem so hard is the existence of two important but very different energy scales,
one characterizing the formation of the local state, ε0, and the other the energy of the Kondo
bound state, TK . The two conduction electron bands with opposite spin are now inequivalent,
as each interacts with a localized state that looks different for different spin. But the spin is
not fixed and is fluctuating precisely because it is coupled to the conduction band.

The Kondo problem can be solved in the high-and low-temperature regimes and the
crossover between them was found as one of the first applications of the renormalization
group and later using the Bethe ansatz [3] for a rather special form of the density of states.
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As in other problems of non-linear physics, the important ingredient of the problem is to
recognize the correct symmetry of the solution and build it into any trial solution. Any trial
solution that has the wrong symmetry is bound to fail or require a sophisticated and lengthy
analysis. A powerful feature in the recent series of papers by Logan [5, 6] and his co-workers
is that they have built in the local moment from the beginning.

The models discussed here describe a very rich variety of physics. This is because there
are several important energies: the thermal energy (kB T ), the band structure of the conduction
electrons, the position of the localized energy relative to the Fermi energy (ε0), the Kondo
temperature (TK ) and the size of the repulsion (U ). The Zeeman energy should be added
to this when a magnetic field is applied. The flexibility of the model means that it can be
applied to physical systems as diverse as a Mn impurity in Cu and the localized states on a
quantum dot interacting with a two-dimensional electron gas—anything in fact where we have
a localized object where the electrons are strongly interacting with each other coupled to a
wider conduction band.

The periodic Anderson model (and its near relative the Kondo lattice) describe a situation
in which there is a localized state in every unit cell. Now the possibilities include almost
all the problems involving strongly interacting electrons. Most notable among these are the
anomalous metals containing rare earths or actinides. These materials may be thought of
as having a Kondo resonance at each site, so the density of states is strongly enhanced (by
factors up to 103) just in a narrow region exactly at the Fermi energy. In an independent
electron picture the density of states is proportional to the electron effective mass and so
these materials are called heavy-fermion compounds. Similar physics is believed to hold in
the cuprate superconductors, the manganites that show colossal magnetoresistance and C60

molecules in doped fullerene.
Again it is relatively straightforward to solve these problems in the high-temperature

regime using perturbation theory and sometimes in the low-temperature regime, but the
crossover between the two is impossible to describe exactly. In a macroscopic system it
is possible to have a real broken symmetry and exactly what symmetry is broken in the low-
temperature phase of a Kondo lattice has been a source of controversy.

A new very powerful method, the dynamic mean-field theory (DMFT), has been developed
very recently [7]; it gives accurate solutions of the periodic problem using the results of the
impurity problem. In this method, full use is made of the density of states and the low-
energy dynamics of the impurity model which contains all the important physics describing
the Kondo resonance. The approximation that is made is that the localized solutions are
combined together in a way that ignores some of the subtleties of the real crystal lattice. This
is a good approximation because the physics is dominated by what happens as a function of
energy. This method depends on solving the localized Anderson problem self-consistently
with a conduction band that itself depends on the solution of the Anderson problem. Hence
there is a need for a reliable and easy solution to the impurity Anderson problem.

In a recent series of articles [5] Logan and his collaborators have derived a new and much
simpler solution of the Anderson problem. Their earlier papers were restricted to the symmetric
Anderson model but their most recent paper [6] extends the analysis to the general case which
gives it much wider applicability. Their method is physically appealing, as they build in a local
moment at the beginning and then solve self-consistently. They have shown that their results
compare well with the best numerical results. Since the results are analytic, they will be much
easier to incorporate into the DMFT and so should lead to a very interesting and new way to
investigate the heavy-fermion materials and other important problems in many-body physics.
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